ST(意法) L6370D **PDF**

深圳创唯电子有限公司

http://www.rohm-chip.com

2.5 A high-side driver industrial intelligent power switch

Features

- 2.5 A output current
- 9.5 V to 35 V supply voltage range
- Internal current limiting
- Thermal shutdown
- Open ground protection
- Internal negative voltage clamping to V_S 50 V for fast demagnetization
- Differential inputs with large common mode range and threshold hysteresis
- Undervoltage lockout with hysteresis
- Open load detection
- Two diagnostic outputs
- Output status led driver
- Non dissipative short circuit protection
- Protection against and surge transient (IEC 61000-4-5)
- Immunity against burst transient (IEC 61000-4-4)
- ESD protection (human body model ±2kV)

PowerSO-20

Description

The L6370 is a monolithic intelligent power switch in Multipower-BCD Technology, for driving inductive or resistive loads. An internal clamping diode enables the fast demagnetization of inductive loads. Diagnostic for CPU feedback and extensive use of electrical protections make this device extremely rugged and specially suitable for industrial automation applications.

Table 1. Device summary

Part number	Op. temp. range, °C	Package	Packaging
L6370D	-25 to +85	PowerSO-20	Tube
L6370D013TR	-25 to +85	PowerSO-20	Tape and reel

Contents L6370

Contents

1	Bloc	ck diagram and pin description	3
	1.1	Pin description	4
2	Elec	trical specifications	5
	2.1	Absolute maximum ratings	5
	2.2	Thermal data	5
	2.3	Electrical characteristics	6
	2.4	AC operation	7
3	Circ	uit description	8
	3.1	Diagnostic truth table	9
	3.2	Input section	9
	3.3	Diagnostic logic	9
	3.4	Short circuit operation	10
	3.5	Overtemperature protection (OVT)	10
	3.6	Undervoltage protection (UV)	10
	3.7	Demagnetization of inductive loads	11
4	Pack	kage mechanical data	12
	4.1	PowerSO-20 mechanical data and package dimensions	13
	4.2	PowerSO-20 packing information	14
5	Revi	ision history	17

1 Block diagram and pin description

Figure 1. Block diagram

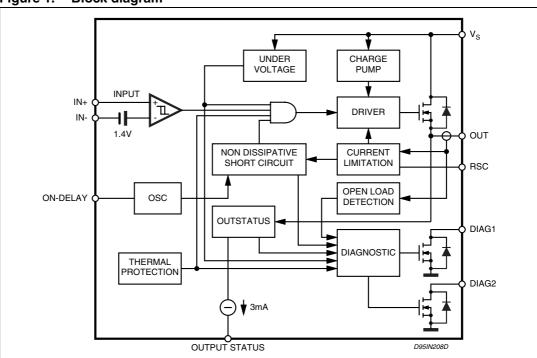
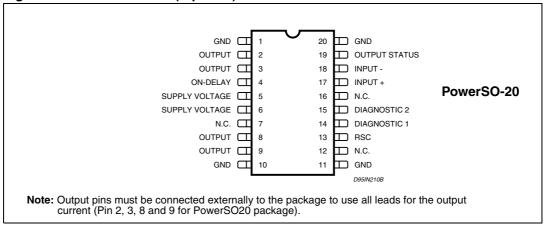



Figure 2. Pin connection (top view)

1.1 Pin description

Table 2. Pin description

Pin N°	Pin name	Function
14	DIAG1	DIAGNOSTIC 1 output. This open drain reports the IC working conditions. (See diagnostic truth <i>Table 7</i>)
15	DIAG2	DIAGNOSTIC 2 output. This open drain reports the IC working conditions. (See diagnostic truth <i>Table 7</i>)
18	IN-	Comparator non inverting input
17	IN+	Comparator inverting input
19	OUTSTATUS	This current source output is capable of driving a LED to signal the status of the output pin. The pin is active (source current) when the output pin is considered high (See <i>Figure 3</i>)
1, 10, 11, 20	GND	Ground
4	ON-DELAY	Programmable ON time interval duration during short circuit operation
13	RSC	Current limitation setting.
8, 9	OUTPUT	High side output with built-in current limitation
5, 6	V _S	Supply Voltage Input, the value of the supply voltage is monitored to detect under voltage condition

2 Electrical specifications

2.1 Absolute maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _S	Supply voltage (T _W < 10ms)	50	V
V _S -V _O	Supply to output differential voltage. See also V_{Cl}	internally limited	V
V _{od}	Externally forced voltage	-0.3 to 7	V
I _{od}	Externally forced current	±1	mA
V _i	Input voltage	-10 to V _S +10	V
V _i	Differential input voltage	43	V
li	Input current	20	mA
Io	Output current. see also ISC	internally limited	А
P _{TOT}	Power dissipation. see also thermal characteristics.	internally limited	W
T _{OP}	Operating temperature range (T _{amb})	-25 to +85	°C
T _{STG}	Storage temperature	-55 to 150	°C
E _I	Energy induct. load T _J = 85°C	1	J

2.2 Thermal data

Table 4. Thermal data

Symbol	Description		Value	Unit
R _{thJC}	Thermal resistance junction to case	Max.	1.5	°C/W
R _{thJA}	Thermal resistance junction to ambient	Max.	-	C/ VV

2.3 Electrical characteristics

(V_S = 24V; T_J = -25 to +125°C, unless otherwise specified)

Table 5. Electrical characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V_{smin}	Supply voltage for valid diagnostics	I _{diag} > 0.5mA; V _{dg1} = 1.5V	4		35	V
V _s	Supply voltage (operative)		9.5	24	35	V
Iq	Quiescent current I _{out} = I _{os} = 0	V _{il} V _{ih}		0.8	1.4 4	mA
V _{sth1}	Undervoltage threshold 1	(See Figure 4), T _{amb} = 0 to +85°C	8.5	9	9.5	V
V _{sth2}	Undervoltage threshold 2		8	8.5	9	V
V _{sth3}	Supply voltage hysteresis		300	500	700	mV
I _{sc}	Short circuit current	V_S = 9.5 to 35V; R_L = 2Ω 5k Ω < R_{SC} < 30k Ω	1	15/R _{SC} (kΩ	2)	А
		0< R _{SC} < 5kΩ	2.6	3.2	4	Α
V	Outrout valta va disar	$I_{out} = 2.0A, T_j = 25^{\circ}C$ $T_j = 125^{\circ}C$		200 320	280 440	mV
V _{don}	Output voltage drop	$I_{out} = 2.5A, T_j = 25^{\circ}C$ $T_j = 125^{\circ}C$		250 400	350 550	mV
I _{oslk}	Output leakage current	$V_i = V_{il}$; $V_0 = 0V$			500	μΑ
V _{ol}	Low state out voltage	$V_i = V_{il}$; $R_L = \infty$		0.8	1.5	V
V _{cl}	Internal voltage clamp (V _S - V _O)	$I_O = 1A$ Single pulsed: $T_p = 300 \mu s$	48	53	58	V
l _{old}	Open load detection current	$V_i = Vi_h$; $T_{amb} = 0$ to +85 °C	1	3	6	mA
V _{id}	Common mode input voltage range (operative)	V _S = 18 to 35V	-7		15	V
I _{ib}	Input bias current	V _i = -7 to 15V; -In = 0V	-250		250	μΑ
V _{ith}	Input threshold voltage	V +ln > V -ln	0.8	1.4	2	V
V _{iths}	Input threshold hysteresis voltage	V +ln > V -ln	50		400	mV
R _{id}	Diff. input resistance	0 < +ln < +16V; -ln = 0V -7 < +ln < 0V; -ln = 0V		400 150		ΚΩ
		V +ln = V -ln +li 0V < Vi < 5.5V -li	-20 -75	-25	+20	
l _{ilk}	Input offset current	-In = GND +li 0V < V+In <5.5V -li	-250	+10 -125	+50	μΑ
		+In = GND +Ii 0V < V-In <5.5V -Ii	-100 -50	-30 -15		

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{oth1}	Output status threshold 1 voltage		4.5	5	5.5	V
V _{oth2}	Output status threshold 2 voltage	(See Figure 3)	4	4.5	5.0	V
V _{ohys}	Output status threshold hysteresis		300	500	700	mV
I _{osd}	Output status source current	$V_{out} > V_{oth1}; V_{os} = 2.5V$	2		4	mA
V _{osd}	Active output status driver drop voltage	$V_s - V_{os}$; $I_{os} = 2mA$ $T_{amb} = 0$ to +85°C		1.5	3	V
I _{oslk}	Output status driver leakage current	$V_{out} < V_{oth2}$; $V_{os} = 0V$ $V_{S} = 9.5 \text{ to } 35V$			25	μΑ
V _{dgl}	Diagnostic drop voltage	D1 / D2 = L; Idiag= 0.5mA D1 / D2 = L; Idiag= 3mA		40 250		mV
l _{dglk}	Diagnostic leakage current	D1 / D2 = H; 0 < Vdg < V _s V _S = 9.5 to 35V			5	μΑ
Source dra	ain NDMOS diode					
V _{fsd}	Forward on voltage	@ I _{fsd} = 2.5A		1	1.5	V
I _{fp}	Forward peak current	t = 10ms; d = 20%			6	Α
t _{rr}	Reverse recovery time	I _f = 2.5A di/dt = 25A/μs		200		ns
t _{fr}	Forward recovery time			100		ns
Thermal c	Thermal characteristics					
⊚Lim	Junction temp. protect.		135	150		°C
ΘΤΗ	Thermal hysteresis			20		°C

Note: $V_{il} \le 0.8V$, $V_{ih} \ge 2V$ @ (V+In > V-In)

2.4 AC operation

Table 6. AC operation

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
t _r - t _f	Rise or fall time	$V_S = 24V$; $R_I = 70\Omega$; R_I to ground		20		μS
t _d	Delay time			5		μS
dV/dt	Slew rate (rise and fall edge)		0.7	1	1.5	V/μs
t _{ON}	On time during short circuit condition	50pF < C _{DON} < 2nF		1.28		μs/pF
t _{OFF}	Of time during short circuit condition			64		t _{ON}
f _{max}	Maximum operating frequency			25		KHz

Circuit description L6370

3 Circuit description

Figure 3. Output status hysteresis

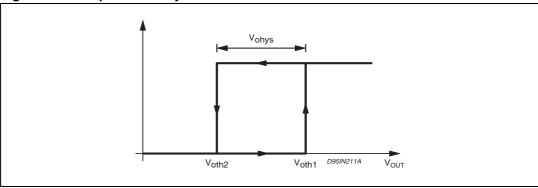


Figure 4. Undervoltage comparator hysteresis

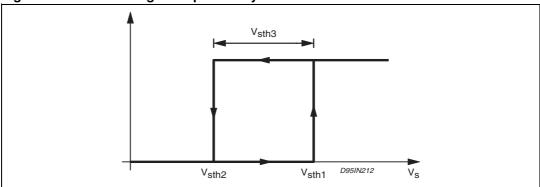
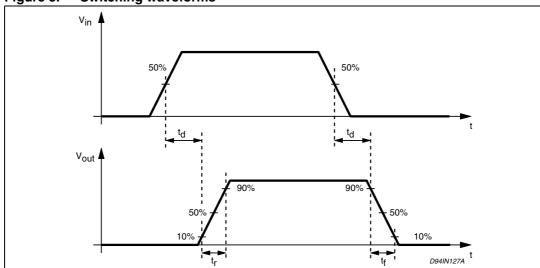



Figure 5. Switching waveforms

L6370 Circuit description

3.1 Diagnostic truth table

Table 7. Diagnostic truth table

Diagnostic conditions	Input	Output	Diag1	Diag2
Normal operation	L	L	Н	Н
Normal operation	Н	Н	Н	Н
Open load condition (I _o < I _{old})	L	L	Н	Н
Open load condition (1 ₀ < 1 _{old})	Н	Н	L	Н
Chart to V	L	Н	L	Н
Short to V _S	Н	Н	L	Н
Short circuit to ground (I _O = I _{SC}) ⁽¹⁾	Н	Х	Н	Н
(pin ON-DELAY grounded)	L	L	Н	Н
Output DMOS onen	L	L	Н	Н
Output DMOS open	Н	L	L	Н
Overtemperature	L	L	Н	L
Overtemperature	Н	L	Н	L
Supply undervolted (V x V)	L	L	L	L
Supply undervoltage (V _S < V _{sth2})	Н	L	L	L

A cold lamp filament, or a capacitive load may activate the current limiting circuit of the IPS, when the IPS is initially turned on.

3.2 Input section

The input section is an high impedance differential stage with high common and differential mode range. There's built-in offset of +1.4 V (typical value) and an hysteresis of 400 mV (maximum value), to ensure high noise immunity.

3.3 Diagnostic logic

The operating conditions of the device are permanently monitored and the following occurrences are signalled via the DIAG1/DIAG2 open-drain output pins:

- Short circuit versus ground. A current limiting circuit fixes at I_{sc} = 3.2 A (typical value) the maximum current that can be sourced from the OUTPUT pin (for more details see short circuit operation section).
- Short circuit versus Vs.
- Under voltage (UV)
- Over temperature (OVT)
- Open load, if the output current is less than 3 mA (typical value).
- Output DMOS open according to the diagnostic truth *Table 7*.

Circuit description L6370

3.4 Short circuit operation

In order to minimize the power dissipation when the output is shorted to grounded, an innovative, non dissipative short circuit protection (patent pending) is implemented, avoiding, thus the intervention of the thermal protection in most cases.

Whenever the output is shorted to ground, or, generally speaking, an overcurrent is sink by the load, the output devices is driven in linear mode, sourcing the lsc current (typically 3.2 A) for a time interval (ton) defined by means of the external CON capacitor connected between the ONDELAY pin and GND. Whether the short circuit crease within the ton interval the DIAG2 output status is not affected, acting as a programmable diagnostic delay.

This function allow the device to drive a capacitive load or a filament lamp (that exhibits a very low resistance during the initial heading phase) without the intervention of the diagnostic. If the short circuit lasts for the whole t_{ON} interval, the output DMOS is switched OFF and the DIAG2 goes low, for a time interval t_{OFF} lasting 64 times t_{ON} .

At the end of the t_{OFF} interval if the short circuit condition is still present, the output DMOS is turned ON (and the DIAG2 goes high - see *Figure 7*) for another t_{ON} interval and the sequence starts again, or, whether not, the normal condition operation is resumed.

The t_{ON} interval can be set to lasts between 64 ms and 2.56 ms for a C_{ON} capacitor value ranging between 50 pF and 2 nF to have:

$$t_{ON} (\mu s) = 1.28 C_{ON} (pF)$$

If the ON-DELAY pin is grounded the non dissipative short circuit protection is disabled, and the Isc current is delivered until the overtemperature protection shuts the device off. The behaviour of the DIAG2 output is, in this situation, showed in the Diagnostic Truth *Table 7*.

3.5 Overtemperature protection (OVT)

If the chip temperature exceeds Qlim (measured in a central position in the chip) the chip deactivates itself.

The following actions are taken:

all the output stage is switched off;

the signal DIAG2 is activated (active low).

Normal operation is resumed as soon as (typically after some seconds) the chip temperature monitored goes back below Θ_{lim} - Θ_{H} .

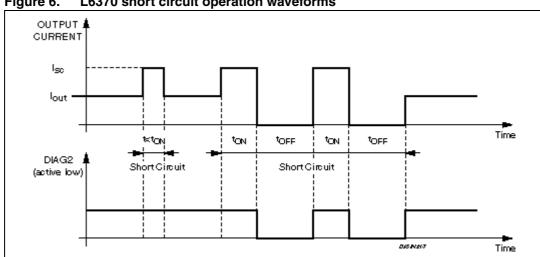
The different thresholds with hysteretic behavior assure that no intermittent conditions can be generated.

3.6 Undervoltage protection (UV)

The supply voltage is expected to range from 9.5 V to 35 V, even if its reference value is considered to be 24 V.

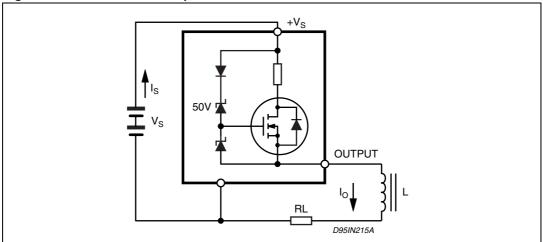
In this range the device operates correctly. Below 9.5 V the overall system has to be considered not reliable.

Protection will thus shut off the output whenever the supply voltage falls below the mask fixed by the $V_{sth1}(9 \text{ V typ.})$ and V_{sth2} (8.5 V typ.).


10/18 Doc ID 4282 Rev 8

L6370 **Circuit description**

> The hysteresis (see Figure 4) ensures a non intermittent behavior at low supply voltage with a superimposed ripple. The under voltage status is signalled via the DIAG1 and DIAG2 outputs (see the Diagnostic Truth Table 7).


3.7 **Demagnetization of inductive loads**

An internal zener diode, limiting the voltage across the Power MOS to between 50 and 60 V (V_{cl}), provides safe and fast demagnetization of inductive loads without external clamping devices. The maximum energy that can be absorbed from an inductive load is specified as 1J (at $T_i = 85^{\circ}C$) (see *Table 3*).

L6370 short circuit operation waveforms Figure 6.

Figure 7. Inductive load equivalent circuit

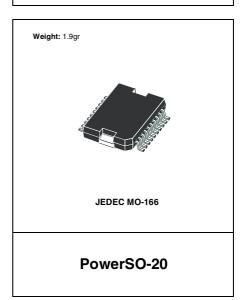
4 Package mechanical data

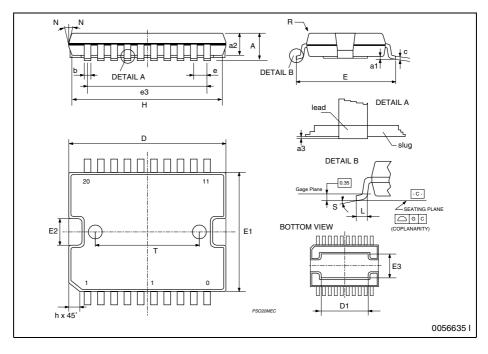
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

4.1 PowerSO-20 mechanical data and package dimensions

PowerSO-20 mechanical data and package dimensions Figure 8.

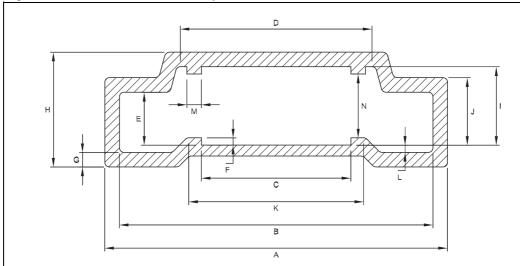
DIM.		mm			inch	
DIW.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			3.6			0.142
a1	0.1		0.3	0.004		0.012
a2			3.3			0.130
аЗ	0		0.1	0.000		0.004
b	0.4		0.53	0.016		0.021
С	0.23		0.32	0.009		0.013
D (1)	15.8		16	0.622		0.630
D1 (2)	9.4		9.8	0.370		0.386
Е	13.9		14.5	0.547		0.570
е		1.27			0.050	
e3		11.43			0.450	
E1 (1)	10.9		11.1	0.429		0.437
E2			2.9			0.114
E3	5.8		6.2	0.228		0.244
G	0		0.1	0.000		0.004
Н	15.5		15.9	0.610		0.626
h			1.1			0.043
L	0.8		1.1	0.031		0.043
N	8°(typ.)					
S			8°(m	ax.)		
Т		10			0.394	


- (1) "D and E1" do not include mold flash or protusions.


 Mold flash or protusions shall not exceed 0.15mm (0.006")

 Critical dimensions: "E", "G" and "a3".

 (2) For subcontractors, the limit is the one quoted in jedec MO-166


OUTLINE AND MECHANICAL DATA

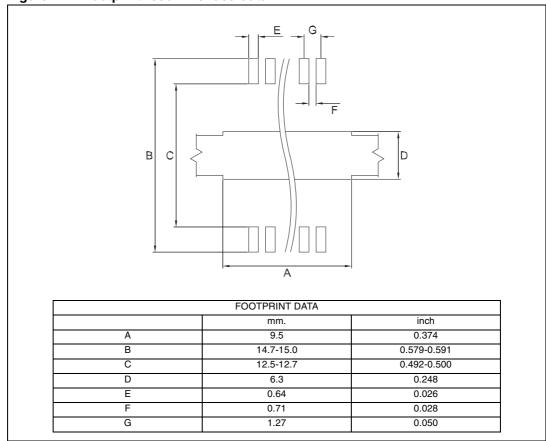
4.2 PowerSO-20 packing information

Figure 9. PowerSO-20 tube shipment information

TUBE MECHANICAL DATA					
	mm.	inch			
A	18.80	0.740			
В	17.2 ±0.2	0.677 ±0.008			
С	8.20 ±0.2	0.323 ±0.008			
D	10.90 ±0.2	0.429 ±0.008			
Е	2.90 ±0.2	0.114 ±0.008			
F	0.40	0.016			
G	0.80	0.031			
Н	6.30	0.248			
1	4.30 ±0.2	0.165 ±0.008			
J	3.7 ±0.2	0.146 ±0.008			
K	9.4	0.370			
L	0.40	0.016			
M	0.80	0.031			
N	3.50 ±0.2	0.138 ±0.008			

BASE QUANTITY	31 pcs.
BULK QUANTITY	310 pcs.

0000000000 TAPE MECHANICAL DATA inch mm. D 1.50 +0.1/0 0.059 +0.004/0 Ε 0.069 ±0.004 1.75 ±0.1 Ро 4.00 ±0.1 0.157 ±0.004 T max. 0.40 0.016 0.059 D1 min. 1.50 11.5 ±0.05 0.453 ±0.002 F K max. 6.50 0.256 P2 2.00 ±0.1 0.079 ±0.004 R 50 1.968 W 24.00 ±0.30 0.945 ±0.012 P1 24.00 0.945 Ao, Bo, Ko 0.05 min to 1.0 max. 0.002 min to 0.039 max. BASE QUANTITY 600 pcs. **BULK QUANTITY** 600 pcs.


Figure 10. PowerSO-20 tape shipment specification

40mm (1.575in) min. access hole at slot location Α at hub Tape slot in core for tape start 2.5mm (0.098in) min. width REEL MECHANICAL DATA 24.0 ±0.30 0.945 ±0.012 Tape size A max. 330.0 12.992 B min. 1.5 0.059 13.0 ±0.20 0.512 ±0.008 D min. 20.2 0.795 N min. 2.362 0.960 +0.079/-0 G 24.4 +2/-0 T max. 30.4 1.197

Figure 11. PowerSO-20 reel shipment specification

Figure 12. Footprint recommended data

L6370 Revision history

5 Revision history

Table 8. Revision history

Date	Revision	Changes
10-Aug-2003	3	Initial release.
12-Dec-2005	4	Applied new Look & Feel Style Sheet. Added L6370D013TR part number. Updated Package and Packing section.
26-Apr-2006	5	Document has been reformatted
19-Feb-2007	6	Typo in Figure 2 on page 3.
19-Jun-2007	7	Truth table updated, deleted Multiwatt mechanical information
20-Jul-2010	8	Updated Table 3 on page 5 and Table 5 on page 6

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

18/18 Doc ID 4282 Rev 8